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Abstract 1 

A fundamental challenge in verifying urban CO2 emissions reductions is estimating the biological 2 

influence that can confound emission source attribution across heterogeneous and diverse 3 

landscapes. Recent work using atmospheric radiocarbon revealed a substantial seasonal influence 4 

of the managed urban biosphere on regional carbon budgets in the Los Angeles megacity, but 5 

lacked spatially explicit attribution of the diverse biological influences needed for flux 6 

quantification and decision making. New high-resolution maps of land cover (0.6 m) and irrigation 7 

(30 m) derived from optical and thermal sensors can simultaneously resolve landscape influences 8 

related to vegetation type (tree, grass, shrub), land use, and fragmentation needed to accurately 9 

quantify biological influences on CO2 exchange in complex urban environments. We integrate 10 

these maps with the Urban Vegetation Photosynthesis and Respiration Model (UrbanVPRM) to 11 

quantify spatial and seasonal variability in gross primary production (GPP) across urban and non-12 

urban regions of Southern California Air Basin (SoCAB). Results show that land use and landscape 13 

fragmentation have a significant influence on urban GPP and canopy temperature within the water-14 

limited Mediterranean SoCAB climate. Irrigated vegetation accounts for 31% of urban GPP, 15 

driven by turfgrass, and is more productive (1.7 vs 0.9 µmol m-2 s-1) and cooler (2.2 ± 0.5 K) than 16 

non-irrigated vegetation during hot dry summer months. Fragmented landscapes, representing 17 

mostly vegetated urban greenspaces, account for 50% of urban GPP. Cooling from irrigation 18 

alleviates strong warming along greenspace edges within 100 m of impervious surfaces, and 19 

increases GPP by a factor of two, compared to non-irrigated edges. Finally, we note that non-20 

irrigated shrubs are typically more productive than non-irrigated trees and grass, and equally 21 

productive as irrigated vegetation. These results imply a potential water savings benefit of urban 22 
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shrubs, but more work is needed to understand carbon vs water usage tradeoffs of managed vs 23 

unmanaged vegetation.    24 

Introduction  25 

Fossil fuel CO2 emissions from cities account for 70% of anthropogenic emissions globally 26 

(United Nations, 2012). Rapid global urbanization is expected to accelerate emissions growth 27 

through doubling of urban populations (2.6 to 5 billion) and tripling of urban areas from 2000 to 28 

2030 (DESA UN, 2015). This growth will have direct global impacts through increased 29 

greenhouse has (GHG) forcing and numerous local environmental consequences (Grimm, 2008; 30 

Seto et al., 2012; Mishra et al., 2015;). Bottom-up (tallied from fuel consumption information) and 31 

top-down (using urban GHG monitoring networks) approaches are improving our ability to verify 32 

urban CO2 emissions reductions in support of mitigation policies (Gately et al., 2015; Fischer et 33 

al., 2017; Yadav et al, 2021). However, a common challenge in discerning fossil CO2 trends is 34 

accounting for the biological fluxes within and surrounding urban regions (Hutyra et al., 2014).  35 

Urban biogenic CO2 fluxes vary across a range of scales. Regional variation occurs seasonally 36 

with rainfall and water use (Miller, Lehman et al, 2020) as well as spatially through changes in 37 

climate (Yadav et al., 2021). Local variation occurs across heterogeneous and diverse landscapes 38 

and land use practices (Coleman et al, 2020a,b). For example, management practices such as 39 

irrigation can shift the timing of net carbon uptake (Miller, Lehman et al, 2020), and alter responses 40 

to drought (Miller, Alonzo et al., 2020) and temperature (Wetherley et al., 2018), relative to native 41 

vegetation. Fragmented landscapes, consisting of patches of vegetation surrounded by impervious 42 

surfaces, show differences in biomass accumulation and temperature stress along edge-to-interior 43 

gradients in urban and non-urban forests (Reinmann et al., 2020). Urban green space experiments 44 

that mimic urban forests show potentially significant influence on carbon sequestration over 45 
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multiple decades (Strohbach et al., 2012). Despite these important influences, variability in land 46 

cover, land use, and fragmentation across the urban matrix presents a formidable challenge for 47 

disentangling fossil vs biological influences on urban carbon budgets. 48 

Modeling techniques combining vegetation optical remote sensing with flux towers and machine 49 

learning are improving assessments of urban biogenic CO2 flux and attribution of column CO2 50 

anomalies across urban-non-urban gradients (Wu et al., 2021). Such techniques account for the 51 

influence of sub-grid land cover variations (~0.5 km) on gridded CO2 flux (~ 5 km), thereby filling 52 

gaps left by coarser resolution regional and global models (> 50 km). However, local variations in 53 

biogenic carbon flux associated with heterogeneous and diverse urban landscapes, which occur at 54 

very high spatial resolution (VHR; < 30 m), present a computational challenge for large scale 55 

models. Consequently, our ability to detect and quantify differences in vegetation seasonal phase, 56 

stress response, and growth rates across native, managed, and fragmented vegetation is limited. 57 

Here, we leverage new VHR maps of land cover and land use obtained from optical and thermal 58 

remote sensing imagery (Coleman et al., 2020a,b) with the Urban Vegetation and Photosynthesis 59 

and Respiration Model (UrbanVPRM) to analyze seasonal variations of gross primary production 60 

(GPP) as a function of land cover (grass, shrub, tree), land use (irrigated fraction), and landscape 61 

fragmentation (edge, interior) across urban and non-urban subregions across the geographically 62 

complex Southern California Air Basin (SoCAB) for one year. Our primary objective is to identify 63 

dominant landscape effects on the timing and amplitude of seasonal GPP in a water-limited 64 

Mediterranean environment. In particular, we provide critical bottom-up context for a recent top-65 

down study (Miller, Lehman et al, 2020) attributing seasonally varying biospheric fluxes in LA to 66 

irrigated urban vegetation. We address the following science questions: (1) Is irrigated urban 67 

vegetation the dominant driver of GPP in LA as expected from Miller, Lehman et al (2020)? (2) 68 
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Is edge vegetation more productive than interior vegetation? (3) How do fragmentation effects 69 

differ between temperature and water limited climates? The paper is organized as follows: Section 70 

2 provides an overview of UrbanVPRM and vegetation classification; Section 3 presents maps and 71 

seasonal time series of GPP as functions of land cover, irrigation fraction, and fragmentation; 72 

Section 4 discusses the dominant drivers of urban and non-urban carbon cycles within SoCAB and 73 

their implications; Section 5 summarizes main conclusions.  74 

2   Methods 75 

2.1 Study Region 76 

Our study focuses on seasonal and spatial variations in GPP across SoCAB and the greater 77 

metropolitan urban area of Los Angeles (LA) (Fig 1) over a one-year period from July 2017 – June 78 

2018. This region is geographically and topographically complex, encompassing an area of 79 

~16,000 km2 and contains a mixture of topographic features, unmanaged, non-urban vegetation 80 

including semi-arid Mediterranean climate, diverse land cover, and heavily managed urban 81 

vegetation. The climate is characterized by seasonal changes in rainfall with hot, dry summers and 82 

mild, rainy winters.  83 

2.2 UrbanVPRM 84 

We estimated GPP across urban and non-urban SoCAB at 30 m resolution using the Vegetation 85 

Photosynthesis and Respiration Model (VPRM), a simplified light-use efficiency carbon model to 86 

directly quantify ecosystem carbon fluxes, relying on spatially explicit meteorological forcing and 87 

remote-sensing to drive phenology and water stress (Mahadevan et al, 2008). We retain the original 88 

formulation of GPP as described in Mahadevan et al (2008),  89 

��� =  −� � �	
��  � �	
��  � �	
�� ∗ ��� ∗ 
1

�1 +  ��� ����⁄ �
 90 
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accounting for seasonal variations in light (Photosynthetically Active Radiation, or PAR) and light 91 

absorption as determined from Enhanced Vegetation Index (EVI), the variation in optimal light 92 

use efficiency (LUE, denoted by �) across vegetation types, and downregulation of LUE due to 93 

temperature stress (Tscale), water stress (Wscale), and leaf age (Pscale). Note that we have replaced 94 

gross ecosystem exchange (GEE) in the original formulation with GPP, and multiplied the right 95 

side by (-1), such that values are positive definite and represent the increase in carbon in vegetation. 96 

The main innovations in this study are the use of new high-resolution inputs including (1) 0.6 m 97 

land cover maps to determine fractional vegetation classes within the 30 m VPRM grid, (2) 30 m 98 

maps of EVI and Land Surface Water Index (LSWI) from Sentinel-2 harmonized surface 99 

reflectance to constrain light absorption, phenology and water stress, and (3) 1.3 km maps of PAR 100 

and temperature from the Weather Research Forecasting (WRF) model. We loosely refer to this 101 

version of the model as UrbanVPRM following Hardiman et al (2017) since we suppress GPP due 102 

to impervious surfaces in our land cover map.   103 

Model parameters including � and half saturation value of PAR (����), which determine the 104 

sensitivity of GPP to meteorological forcing as a function of vegetation type, are optimized though 105 

nonlinear least squares against flux tower observations of CO2 flux, and assigned to a model grid 106 

cell in a look up table approach. GPP parameters are obtained from Park et al (2018) and optimized 107 

against net ecosystem exchange CO2 flux data in non-urban vegetation within SoCAB. FLUXNET 108 

sites include Coastal Sage, Grassland, and Oak/Pine forest (http://www.ess.uci.edu/~california), 109 

which are used here to parameterize shrub, grass, and tree vegetation, respectively. GPP 110 

parameters are assigned to fractional land cover classes (tree, grass, shrub) within each 30 m 111 

UrbanVPRM grid cell, derived using existing 0.6 m urban land cover maps obtained from airborne 112 

and satellite optical imagery (Section 2.3). Flux measurements in semi-arid urban regions 113 
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characteristic of SoCAB, which includes a mixture of managed land-cover types (e.g., lawns, 114 

parks, gardens), are unavailable at the time of this study. We prescribe non-urban parameters for 115 

urban and non-urban landcover classes, and allow remote sensing inputs to control seasonal GPP 116 

dynamics across urban gradients.  117 

The strength of UrbanVPRM lies in its remote sensing constraints. Spaceborne remote sensing 118 

inputs include Sentinel 2 harmonized reflectance in the red (�red, 0.64-0.67 µm), near-infrared 119 

(�NIR, 0.85-0.88 µm), and shortwave-infrared (�SWIR, 1.57-1.65 µm) bands (Claverie et al., 2018), 120 

which are used to define EVI ((�NIR- �red)/�NIR) and LSWI ((�NIR- �swir)/(�NIR+ �swir)) following 121 

Mahadevan et al (2008). EVI is used as a direct input into the GPP model, whereas LSWI is used 122 

as an input in the Pscale ((1+LSWI)/2) and Wscale ((1+LSWI)/(1+LSWImax) terms. Sentinel-2 data 123 

has relatively high spatial resolution (resampled to 30 m) and frequent revisit time (3-5 days in 124 

midlatitudes) making it ideal for studying GPP variability across urban vegetation gradients. 125 

Missing EVI and LSWI values, typically from cloud contamination, are gap-filled using linear 126 

interpolation between two dates. 127 

Meteorological inputs include hourly PAR and air temperature (Tair) obtained from 1.3 km WRF 128 

runs from July 2017 when Sentinel 2 data became available to June 2018. The WRF setup and 129 

validation procedure are similar to those in Yadav et al (2019, 2021), using the improved hybrid 130 

terrain-following vertical coordinate available in WRF v391. MYNN-EDMF boundary layer 131 

physics, and scale-aware Grell-Freitas cumulus parameterization. We use a nearest neighbor 132 

approach to extract 1.3 km WRF fields across the 30 m UrbanVPRM grid. 133 

Validation of urban GPP is critical but challenging due to (1) unavailable urban flux towers, (2) 134 

uncertain GPP partitioning techniques and terrain effects in non-urban flux towers surrounding 135 

LA, and (3) lack of equivalent satellite-derived fluxes at 30 m. A recent comparison of urban 136 
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biogenic CO2 fluxes at 5 km, including aggregated maps of GPP from the UrbanVPRM 137 

configuration described here, and estimates of GPP derived from the Contiguous Solar Induced 138 

Fluorescence (CSIF) product (Zhang et al., 2018), showed good agreement of spatial variability 139 

over SoCAB from Jul-Sep 2017 (Wu et al., 2021). Given widespread evidence that solar induced 140 

chlorophyll fluorescence (SIF) provides an excellent proxy for GPP at 5 km ecosystem scale 141 

including California (e.g., Turner et al., 2020 and references therein), we take this analysis one 142 

step further by comparing the full annual cycle of UrbanVPRM GPP and CSIF in urban and non-143 

urban SoCAB. This comparison shows similar overall seasonal structure between products (Fig 144 

2), including larger magnitude in nonurban regions, and reduced signals in late spring in urban 145 

regions (Fig 2a). This also shows good agreement of the gradient between urban and nonurban 146 

regions, in particular the divergence between regions from Jul-Oct 2017, and increased divergence 147 

in Apr 2018 (Fig 2b). We explore landcover effects on these patterns in more detail in Section 3.   148 

2.3 Land Cover  149 

Landcover maps are taken from Coleman et al. (2020a), who combined high resolution optical 150 

imagery from the Sentinel-2 (10 m) satellite and National Airborne Imagery Program (NAIP, 0.6 151 

m) airborne flights using a random forest algorithm to classify basic vegetated (tree, grass, shrub) 152 

and impervious land covers at ~0.6m across the Southern California Air Basin (SoCAB), including 153 

the LA megacity. NAIP imagery from 2016 and 2018 are primarily used to classify urban 154 

impervious surface area and vegetation (grass, shrub, tree) at 0.6 m native resolution, while 155 

Sentinel-2 imagery is used for non-urban vegetation and to remove shadow effects (Fig 1c). The 156 

technique includes preprocessing for water and shadow effects, selection of training and validation 157 

data, and supervised image classification using object-based classification in Google Earth Engine, 158 

producing 85% overall accuracy compared to hand-drawn polygons (Coleman et al., 2020a). To 159 
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preserve land cover heterogeneity in the coarser 30 m UrbanVPRM grid, we use the native 0.6 m 160 

classification to derive fractional land cover patches, and assign model parameters and weights 161 

accordingly. The 1-2 year time difference between NAIP imagery and UrbanVPRM runs creates 162 

a potential mismatch between vegetation class and model inputs, but we assume vegetation change 163 

is minimal over this period. We estimate that two-thirds of SoCAB is vegetated (10,700 km2; 164 

Table 1), mostly by shrubs (~50%) surrounding LA, followed by trees (~30%) and grass (~20%). 165 

The urban region is dominated by trees and grasses, interwoven with impervious surfaces.  166 

2.4 Irrigated Vegetation 167 

To quantify the impact of irrigation fraction on GPP variability, we use maps of irrigated and non-168 

irrigated vegetation over SoCAB developed by Coleman et al (2020b; Fig 1d). The classification 169 

leverages diurnal LST acquisitions from cloud-screened images from the ECOsystem Spaceborne 170 

Thermal Radiometer Experiment on Space Station (ECOSTRESS; Fisher et al., 2020; Hulley et 171 

al., 2021) in the summers of 2018 and 2019, providing information about the strong cooling effect 172 

of irrigated vegetation in the afternoon in semi-arid environments. A thermal sharpening algorithm 173 

(Hulley  2019a) trained on airborne hyperspectral (AVIRIS) and thermal (HyTES) data and 174 

optimized for the LA urban environment (Hulley 2019b) is used to downscale 70 m ECOSTRESS 175 

LST to the 30 m UrbanVPRM  grid. To unmix impervious surface contributions to thermal data in 176 

the 30 m ECOSTRESS pixels, the downscaled LST was multiplied by fractional vegetation 177 

derived from the 0.6 m land cover map in Section 2.3 to create a vegetation weighted LST product, 178 

which was then used to train a supervised classification model. Analysis of summer morning 179 

versus afternoon data in LA shows a more significant difference between afternoon and morning 180 

LST in non-irrigated vegetation pixels compared to irrigated pixels, which experience pronounced 181 

ET driven afternoon cooling. This afternoon cooling pattern provides the basis for classifying 182 
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irrigated pixels with 98% accuracy using validation against withheld ECOSTRESS pixels 183 

(Coleman, 2020b).  184 

2.5 Fragmented Vegetation 185 

We examine effects of fragmented vegetation on GPP using techniques developed by Reinmann 186 

and Hutyra (2017) to distinguish edge from interior vegetation (Fig 1e). Our urban-based approach 187 

is slightly different from Reinmann and Hutyra (2017), which focused on non-urban areas. We 188 

focus only on 30 m2 pixels composed of at least 75% vegetation (grass, tree, shrub) according to 189 

0.6 m land cover maps (Section 2.3). We then define edge vegetation as any vegetated pixel within 190 

100 m of a non-vegetated surface, which is likely to experience heat island influences from 191 

surrounding buildings and impervious surfaces. For larger urban greenspaces, consistent of 192 

multiple adjacent vegetated pixels, we define interior vegetation as any non-edge vegetated pixel. 193 

Fragmented vegetation accounts for 25% of urban vegetation, and is comprised mainly of edges 194 

(80% of fragmented area).   195 

2.6 Analysis 196 

Land cover classification, map production, and regional GPP calculations are performed using 197 

Google Earth Engine software. Statistical analyses are performed using MATLAB, using monthly 198 

GPP and a subset of randomly selected pixels (100,000 of 20,000,000 total pixels) to mitigate 199 

computational burden. We use one-way analysis of variance (anova1 function in MATLAB) to 200 

determine whether monthly mean estimates of GPP across landscape features (e.g, edge tree vs 201 

edge grass) are significantly different (p < 0.05), and estimate confidence intervals (shaded regions 202 

in Figs 3-5) from a modified version of the Tukey-Kramer method for unequal sample sizes 203 

(Tukey’s honestly significant difference criterion; multcompare function in MATLAB). We 204 

acknowledge sub-setting leads to representation errors across vegetation classes, and thus 205 
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inconsistencies with regional values reported in Table 1. While seasonal GPP patterns presented 206 

from randomly generated points are broadly consistent with regional patterns, we refer the reader 207 

to Table 1 for more accurate regional assessments.  208 

Unless otherwise stated, results are reported for vegetated surfaces, classified as tree, grass or 209 

shrub. We present time series of monthly mean GPP per unit area to compare rates of productivity 210 

across different regions and vegetation classes, along with temporally and spatially integrated 211 

values to illustrate dominant contributions to regional GPP budgets. We do not report results 212 

relating to irrigation effects on interior vegetation for specific land cover classes due to insufficient 213 

sampling size (< 0.4% of total urban vegetation combined). Finally, we analyze surface 214 

temperature differences between vegetation types using two years (2018-19) of ECOSTRESS 215 

LST, focusing on the summer average (June-August) across morning-to-afternoon acquisition 216 

times. Uncertainty values are presented as standard errors.    217 

3 Results 218 

3.1 Non-urban Vegetation 219 

Regional GPP is subject to strong spatial and seasonal variability driven by topography and 220 

heterogenous fragmented landscapes (Fig 1). Non-urban vegetation dominates the regional GPP 221 

budget, accounting for 80% of annual GPP (4.6 of 5.7 Tg C, Table 1). GPP peaks from mid spring 222 

(~Apr) to late summer (~Aug), declines rapidly during autumn (Sep-Nov), and gradually recovers 223 

into spring (Fig 2). This seasonal pattern is driven primarily by non-urban trees and shrubs, which 224 

are slightly offset in phasing of peak amplitude (Fig 3 a and b). While non-urban trees are the 225 

most productive vegetation in SoCAB per unit area in summer, peaking at 7 µmol m-2 s-1 in June, 226 

shrubs are more widespread in the study area (5174 km2 vs 3378 km2), peak two months earlier 227 

(in April), and sustain high productivity through June. As such, annual integrated GPP across 228 
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SoCAB is 50% larger in shrubs (2.9 Tg C) than trees (1.8 Tg C). Non-urban grass is also productive 229 

in June, but less widespread. The combination of non-urban shrubs and trees drives a double GPP 230 

peak in April and June, respectively.  231 

3.2 Urban Vegetation 232 

Urban vegetation accounts for 20% of annual GPP in SoCAB. This reduced contribution is due to 233 

smaller vegetated area (61% of non-urban area) and lower mean annual productivity per vegetated 234 

pixel (25% of non-urban GPP). The fractional contribution varies seasonally, peaking at ~30% of 235 

SoCAB GPP from Feb-Mar, and decreasing to ~10% from Apr-Aug as mean urban and non-urban 236 

GPP rates diverge (Fig 2a). Urban vegetation also shows a double GPP peak, but with the first and 237 

largest peak occurring earlier (Feb-Apr) with similar contributions from all vegetation types, and 238 

a later and secondary summer peak (Jun-Aug) driven mainly by trees and grass (Fig 3d). Mean 239 

GPP rates are consistent across urban vegetation types with more prominent grass influence, 240 

especially in summer, compared to non-urban vegetation (Fig 3c). We investigate this contrast in 241 

seasonal phasing between non-urban and urban vegetation, and urban shift from spring shrub 242 

dominance to summer grass dominance, in more detail below.   243 

3.3 Irrigation and Landscape Fragmentation 244 

We estimate that irrigated vegetation accounts for 11% of vegetated SoCAB landcover and 24% 245 

of vegetated urban cover (Table 1), and is comprised mainly of turf grass in residential areas and 246 

golf courses.  247 

Irrigated vegetation accounts for 21% of vegetated urban area and 31% of urban GPP, but is twice 248 

as productive as non-irrigated vegetation (Fig 4 a-b). In particular, irrigated GPP increases from 249 

the cool wet spring into the hot dry summer, while non-irrigated GPP declines. Both classes decline 250 



 

 12 

rapidly in autumn. Fragmented vegetation accounts for 25% of vegetated urban area and 50% of 251 

urban GPP. Edge and interior vegetation are equally productive on average (Fig 4 c-d), but edge 252 

vegetation occupies five times as much area, thus accounting for 83% of the fragmented GPP and 253 

42% of total urban GPP. Irrigated edge vegetation accounts for only 4% of vegetated urban area 254 

and 10% of urban GPP, but represents the most productive form of vegetation, peaking at ~4 umol 255 

m-2 s-1 in summer (Fig 4 e-f).  256 

Partitioning by vegetation class reveals a more significant effect of irrigation and fragmentation 257 

on seasonal GPP (Fig 5). Irrigation amplifies grass GPP by two- to three-fold in spring and 258 

summer, and doubles shrub GPP in summer (Fig 5 a-b). Interior vegetation supports higher tree 259 

and grass including 50% higher GPP in summer (Fig 5c-d). Irrigation increases edge grass and 260 

shrub GPP by 2-fold on average, with increasingly beneficial effects as conditions dry from spring 261 

through autumn (e.g., factor of 1.5 vs 3 increase in spring and autumn, respectively; Fig 5e-f).  262 

Irrigation and fragmentation also have a significant effect on land surface temperature. In summer, 263 

irrigated urban vegetation is 1.8 ± 0.5 K cooler than non-irrigated vegetation on average, and 264 

interior vegetation is 1.9 ± 0.9 K cooler than edge vegetation. These effects are strongly dependent 265 

on vegetation type, with strongest interior cooling in trees (6.4 ± 1.3) and irrigation cooling in 266 

grasses (3.2 ± 1.6). Moreover, the cooling effect of irrigation is enhanced in edge vegetation (4.0 267 

± 0.9 K), and greatest in irrigated edge grass, which is 4.7 ± 1.2 K cooler on average than non-268 

irrigated edge grass. These cooling effects are significant given the predominance of edge 269 

vegetation in our study, which encompasses an area five times greater than that of interior 270 

vegetation in urban LA.  271 

3.4 Regional Scaling 272 
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Regional estimates of GPP for SoCAB and its urban sub-region are provided in Table 1. Irrigation 273 

has a significant effect on the mean GPP of urban vegetation, driving a 2-fold increase in the annual 274 

mean, including a significant effect during peak heat stress in summer and autumn. What irrigated 275 

urban vegetation lacks in spatial extent (21% of urban area), it makes up for in total production 276 

(0.36 Tg C, or 31% of total annual urban GPP, 1.15 Tg C). Edges are also a small fraction of urban 277 

area (24%), but account for nearly half (42%) of total urban GPP (0.48 Tg C).   278 

4 Discussion 279 

Our main findings support top-down evidence from atmospheric radiocarbon; namely, that the 280 

managed urban biosphere contributes significantly to the regional GPP budget of SoCAB, 281 

especially during peak water use in summer (Miller, Lehman et al., 2020). Critically, our satellite-282 

constrained, very-high resolution, bottom-up model provides unprecedented, spatially explicit 283 

detail on the underlying processes and function of the urban and non-urban biosphere.   284 

Non-urban vegetation (surrounding LA) is strongly seasonal and primarily climate-driven, with 285 

sustained high GPP from late spring through late summer (Apr-Aug) and sharp decline in autumn, 286 

consistent with winter precipitation, cooler summer temperature, and warm/dry autumn 287 

conditions. Seasonal GPP is driven by shrubs in late spring following winter rainfall and favorable 288 

temperatures, and trees in mid-summer. Trees are the dominant non-urban vegetation type in terms 289 

of mean annual GPP, while shrubs contribute more to regionally integrated GPP across SoCAB 290 

due to higher areal coverage (Table 1 and Fig 3).  291 

Los Angeles urban vegetation features prominent double peaks, driven by a mixture of climate 292 

(temperature and water stress) and land surface (plant functional type, irrigation, and landscape 293 

fragmentation) effects. An early season primary peak spans mid-winter to early spring during peak 294 

rainfall, and secondary peak spans warm and dry summer months. The three vegetation classes 295 
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analyzed in this study (tree, shrub, grass) show similar seasonal patterns, with shrubs and grass 296 

outproducing trees by a factor of 2 on average.  297 

In general, irrigation represents a small (14%), but highly productive fraction of urban land use,. 298 

Moreover, peak GPP of irrigated vegetation occurs in the dry and hot summer months (Fig 4a), 299 

when plants are exposed to increased heat and water stress typical of the SoCAB Mediterranean 300 

climate, and is three times more productive than non-irrigated vegetation. Overall, irrigated 301 

vegetation accounts for 31% of urban GPP and 6% of SoCAB GPP. Importantly, the effect of 302 

irrigation is highly land cover dependent, such that the partitioning of GPP between irrigated and 303 

non-irrigated land use components can differ significantly. In particular, while grass and shrubs 304 

show similar mean GPP and seasonality (Fig 3C), non-irrigated shrubs outproduce non-irrigated 305 

grass by a factor of 1.5-2 over the entire growing season (Fig 4b). Moreover, irrigation has very 306 

little impact on shrubs, but increases the GPP of grass by a factor of 2. We attribute the year-round 307 

irrigation effect in grass to watering of turfgrass (e.g., lawns and golf courses), and dominance of 308 

non-irrigated shrubs in summer to acclimation of native vegetation to the semi-arid Mediterranean 309 

climate.   310 

Landscape fragmentation also plays an important role in the urban GPP budget. For example, 311 

interior urban trees and turf grass show a slight boost to GPP in summer (Fig 5d). We attribute 312 

this pattern to reduced heat stress of cooler interior canopies, relative to warmer edge vegetation. 313 

with evidence from ECOSTRESS LST data supporting a warming effect on edge vegetation in 314 

Los Angeles, especially in grass (+4.7 K). We attribute lower interior LST to a combination of 315 

reduced exposure to heat re-radiated from nearby buildings and paved surfaces (e.g., Wetherley et 316 

al., 2018), and healthy unstressed vegetation, which is more likely to photosynthesize and self-317 

cool through evapotranspiration. Several recent efforts analyzing diurnal LST change in global 318 
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urban vegetation canopies find a significant cooling effect of increased green area fraction on 319 

daytime LST (Dewan et al., 2021; Du et al., 2019; Vo et al., 2021). Our results suggest that urban 320 

planning efforts to alleviate warming trends associated with Urban Heat Islands (UHIs) through 321 

increased vegetation coverage (e.g., Chakroborty et al., 2019) should also carefully consider the 322 

effect of greenspace interior to edge ratio. In other words, do strategies focused on fewer but larger 323 

greenspaces with high relative interior area offer higher cooling potential than those focused on 324 

more abundant but smaller greenspaces with higher relative edge area?    325 

Moreover, our results contrast with landscape fragmentation effects in non-urban Massachusetts, 326 

with forest growth and biomass increasing from interior to edge, most likely driven by increased 327 

light availability near forest edges (Reinmann et al., 2017; 2020). We attribute these contrasting 328 

patterns to differences in heat stress, driven by UHIs, and exacerbated hot, dry semi-arid regions 329 

such as LA. Indeed, Reinmann et al (2017) find that warmer edges have a negative influence on 330 

vegetation growth in the growing season during heat stress periods in the New England. However, 331 

increased water availability through irrigation of urban edge vegetation during dry and hot summer 332 

months reduces LST by 4.0 K on average and increases edge GPP by a factor of 2. The situation 333 

is reminiscent of wet tropical forests, which can maintain or even increase productivity during the 334 

dry season through access to subsurface water, despite dry season warming (Guan et al., 2015; 335 

Doughty et al., 2019).  336 

Our results indicate that management of the urban biosphere through irrigated vegetation has 337 

potential to mitigate UHI effects through the cooling effect of transpiration. This is especially 338 

important for edge vegetation, which covers five times as much urban surface area as interior 339 

vegetation (Table 1). We note the true extent of edge vegetation is likely higher than estimated in 340 



 

 16 

the study, due to our requirement of high vegetation fraction (>75%) in a highly mixed landscape, 341 

suggesting increased potential for UHI mitigation.  342 

Irrigated edges also offer an important boost to mean GPP, which is more than double that of non-343 

irrigated edges. While irrigated edges represent the most productive component of the urban 344 

biosphere, the total GPP (0.16 Tg C) is small compared to regionally integrated urban GPP (1.15 345 

Tg C) and negligible compared to urban fossil fuel emission (~45 Tg C yr-1; Miller, Lehman et 346 

al., 2020) due to its small spatial extent (160 km2 of 4114 km2). While there is potential to increase 347 

the area of irrigated edged through conversion of non-irrigated edges, the impact on biomass 348 

growth, and net carbon exchange, remains to be seen. Moreover, achieving such benefits requires 349 

effective irrigation and maintenance practices to slow the rate of vegetation growth and reduce 350 

mortality risk, and practices that minimize indirect carbon costs associated with water transport 351 

and pruning (Petri et al., 2016; Smith et al., 2019). Specifically, transporting water for irrigation 352 

requires energy and fossil fuel emissions, which is likely to offset any carbon uptake savings of 353 

vegetation growth. 354 

The dominance of non-irrigated shrubs in the urban GPP budget relative to non-irrigated grass, 355 

and nearly equal productivity relative to irrigated grass, suggests that drought tolerant landscaping 356 

could provide a strategy to maintain high productivity without the indirect, water usage and energy 357 

costs of irrigation. For example, deep rooted native evergreen species such as chaparall are better 358 

adapted to maintain metabolism during drought than shallow rooted drought-deciduous species 359 

such as coastal sage scrub (e.g., Barbour and Major, 1977).  360 

Urban GPP sensitivity to land cover, land use, and fragmentation, combined with spatial 361 

heterogeneity across the urban matrix, and dependence on season and region, presents a formidable 362 

challenge for top-down attribution studies of fossil fuel emissions. The methods and results 363 
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described in this paper demonstrate the potential for leveraging very high resolution optical and 364 

thermal remote sensing constraints to refine spatial variability and account for diverse vegetation 365 

sensitivities to temperature and water. Our modeling system is capable of identifying and 366 

quantifying carbon fluxes at 30 m spatial resolution commensurate with land cover and land use 367 

planning, especially in urban regions where ground observations may be limited. Such a method 368 

is scalable to global urban regions, and can help address geographical and international differences 369 

in climate, land cover, land use, and urban expansion, and better elucidate the role of urban areas 370 

in global carbon budgets.  371 

Validation of model results in mixed urban environments is challenging due to lack of (1) urban 372 

tower and in situ measurements and (2) independent remote sensing measurements of vegetation 373 

photosynthesis at scales fine enough to resolve vegetation gradients. We have evaluated model 374 

performance at regional scale across urban and non-urban regions within SoCAB through 375 

comparison against the CSIF fluorescence product (Zhang et al., 2018), which provides 376 

independent and well documented measure of photosynthesis at 5 km scale, and its spatial and 377 

temporal variability (Fig 2). We find similar seasonal patterns, including (1) reduced productivity 378 

in winter and gradual increase through spring, (2) higher productivity in non-urban regions relative 379 

to urban regions, and (3) increased divergence between regions from winter to spring (~April). We 380 

attribute mismatches including higher loss of urban GPP in November and the stronger contrast 381 

between urban and non-urban regions in UrbanVPRM to several uncertainties related to model 382 

inputs, process representation, land cover classification, and parameter calibration.  383 

For example, satellite derived land surface water index (LSWI) utilizes shortwave infrared 384 

radiation from 1.57-1.65 µm (SWIR1) to capture the effects of water stress in phenological (Pscale) 385 

and water stress (Wscale) downregulation terms as recommended by Mahadevan et al (2008). 386 
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However, SWIR in the longer wavelength band (e.g., 2.11-2.29 µm, SWIR2) has been 387 

hypothesized to have better performance in characterizing soil water stress and reduced 388 

interference from clouds compared to SWIR1 (Kim 2004; Chandrasekar, 2010). We also note that 389 

LSWI is not as effective in forested vegetation as in ecosystems that senesce during dry periods, 390 

such as grasslands and shrubs characteristic of SoCAB. It could be more effective to also account 391 

for changes in atmospheric demand on forest water stress using vapor pressure deficit (Madani et 392 

al., 2021), similar to GPP algorithms leveraged by the NASA Soil Moisture Active Passive Level 393 

4 Carbon (SMAP-L4C) and Moderate Resolution Imaging Spectrometer (MOD17) products (e.g., 394 

Madani et al., 2017). It is also recommended to use surface temperature (LST) in place of air 395 

temperature (Tair) to study UHI impacts on GPP, which is found to be more responsive to 396 

vegetative cooling in the daytime over global cities (Du et al., 2021) 397 

A more fundamental shortcoming pertains to our model parameters: While GPP spatiotemporal 398 

variability is mainly constrained by remote sensing and meteorological data, functional parameters 399 

controlling GPP sensitivity to temperature and sunlight (� and ����) rely on limited non-urban 400 

flux towers (Park et al., 2018). This affects seasonal and spatial GPP gradients in urban regions 401 

and total GPP relative to non-urban regions in two key ways: (1) high elevation non-urban 402 

vegetation is subject to less heat stress than low elevation urban vegetation, which can experience 403 

difference sensitivities to heat stress; and (2) irrigated vegetation is likely to have higher tolerance 404 

to heat than non-irrigated vegetation. Both problems can be alleviated using more representative 405 

flux tower data in irrigated and non-irrigated urban regions, which weren’t available at the time of 406 

this study. 407 

Moreover, we do not distinguish between evergreen and deciduous species, and instead classify 408 

all trees as deciduous in Pscale, such that phenological stages (budburst, full canopy, and 409 
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senescence) are inadvertently applied to evergreens. This provides a possible explanation for the 410 

rapid divergence of non-urban GPP in spring, assuming most non-urban trees are evergreen but 411 

treated as deciduous. As such, future efforts should pay close attention to plant functional 412 

differences such as phenology.  413 

We acknowledge several additional uncertainties in our land cover analysis. First, while our land 414 

cover classification algorithm is broadly consistent with dominant vegetation classes in SoCAB 415 

based on manual validation (Coleman et al, 2020a), reliance on optical data and low-temporal 416 

resolution airborne snapshots (NAIP) excludes information about (1) seasonal vegetation change, 417 

which can indicate plant phenological differences; (2) interannual variability that indicates changes 418 

in plant structure and function; (3) vegetation height or biomass (from LIDAR) that can indicate 419 

maturity, carbon storage capacity, rooting depth, and drought tolerance (e.g., Stovall et al., 2019); 420 

or (4) species diversity using functional and structural trait information (Wang et al. 2020; 421 

Schneider et al. 2017) that could indicate likelihoods of key native and/or managed species. For 422 

example, AVIRIS flights provide functional information about native versus non-native species 423 

(Underwood et al. 2007, Wetherley et al., 2018) and adaptation to drought (Miller, Alonzo et al., 424 

2020). Such information could distinguish seasonal drought responses in deeply-rooted Chaparral 425 

shrubs versus shallow-rooted Coastal Sage Shrub. Likewise, land use and irrigation classification 426 

does not account for year-to-year changes in irrigation, for example related to changes in rainfall 427 

or water use restrictions, and the 30-m product used here shows increased uncertainty along 428 

vegetation boundaries, especially along the boundary between adjacent land covers (Coleman et 429 

al., 2020b).  430 

Taking the above steps to refine land cover and land use classification, model inputs and 431 

parameters, and account for interannual variability, will establish more accurate links between 432 
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climate, land use, and carbon. More accurate GPP assessments with respect to changing climate 433 

and land use can inform management practices, provide actionable information to government 434 

entities to evaluate and guide progress on attaining emissions goal (Decola et al., 2019) and 435 

determine the social and economic benefits of UHI mitigation (Harlan, 2006; Hulley, 2019b). 436 

5 Conclusions 437 

We use remote sensing constraints with an urban land surface model to quantify spatial and 438 

seasonal GPP variability across SoCAB at 30 m. The combination of high spatial resolution and 439 

optical and thermal remote sensing provides attribution of landscape influences related to 440 

vegetation type, landscape fragmentation and irrigation across urban and non-urban gradients. 441 

Non-urban vegetation accounts for 80% of the carbon budget of SoCAB. Irrigated urban 442 

vegetation, dominated by turf grass, accounts for 37% or urban GPP, and is three times more 443 

productive than non-irrigated vegetation during dry and hot summer months. Landscape 444 

fragmentation also plays an important role in the urban carbon budget, with cooler interior 445 

vegetation supporting increased GPP in spring and summer, and irrigation mitigating stress effects 446 

in edge vegetation. Our results support previous findings, and offers a generalized framework to 447 

account for mixed land cover effects in global cities.  448 
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Figure Captions 604 

Figure 1. Maps showing geographic complexity of study region in terms of topography and land 605 

surface characteristics. (A) Study region encompasses Los Angeles urban region (red shading) and 606 

the greater Southern California Air Basin (SoCAB) (grey). (B) Urban region is surrounding by 607 

diverse topographic features. (C) Vegetated and non-vegetated land cover is derived from National 608 

Airborne Inventory Program (NAIP) and Sentinel-2 Imagery (Coleman et al., 2020a). (D) 609 

Irrigation fraction is derived from high resolution land cover, ECOSTRESS thermal data, and 610 

Landsat imagery (Coleman et al., 2020b). (E) Landscape fragmentation, including edge and 611 

interior vegetation and urban greenspace, is derived using algorithms from Reinmann and Hutyra 612 

(2017). (F) Gross primary production (GPP) is derived from the UrbanVPRM carbon cycle model, 613 

constrained by vegetation remote sensing, meteorological reanalysis, and tower optimized 614 

vegetation parameters (characterizing sensitivity to temperature and sunlight). Each pixel is 30 m2 615 

in area.  616 

Figure 2. The annual cycle of GPP across SoCAB (solid) differs substantially in the timing and 617 

magnitude of peak GPP for urban (dotted) and non-urban (dashed) regions. Results include 618 

vegetated surfaces only (grass, tree, or shrub). Spatially and temporally averaged GPP, 619 

representing monthly mean productivity per unit vegetated area, is shown in (a). Spatially and 620 

monthly integrated values, represented integrated GPP over all vegetated surfaces, is shown in (b). 621 

The green lines show a proxy of based on estimates of Solar Induced Fluorescence from the 622 

Contiguous SIF (CSIF) product (Zhang et al., 2018), scaled by a factor of 20 to show relative 623 

seasonal variability. Urban region corresponds to red shaded in region in Fig 1a.  624 
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Figure 3. Similar vegetation types have different influences on the annual GPP cycle in non-urban 625 

(left) and urban (right) regions. Vegetation classes include tree (dark green), grass (light green), 626 

and shrub (magenta), corresponding to the map in Fig 1c. Mean and cumulative GPP values are 627 

shown in the top and bottom rows, respectively (see Fig 2). Note that scale is reduced by a factor 628 

of four for urban GPP for visualization. Shaded areas in Figs 3-5 represent monthly confidence 629 

intervals derived from ANOVA of landcover groups, and calculated from the Tukey-Kramer 630 

method. This 631 

Figure 4. The annual cycle of urban GPP is highly variable across managed and fragmented 632 

vegetation. Managed refers to irrigated or non-irrigated, and fragmentation to edge or interior. 633 

Monthly GPP is shown here as a function of irrigation (left), fragmentation (middle), and the 634 

combination of irrigation and edges (right). Mean and cumulative GPP values are shown in the top 635 

and bottom rows, respectively (see Fig 2).  636 

Figure 5. Irrigation and edge effects on the annual cycle of GPP depends on vegetation type. Here, 637 

GPP is plotted as a function of land cover, irrigation, and landscape fragmentation. Individual 638 

effects of irrigation are shown in (a) and (d), of fragmentation in (b) and (e). Combined effects of 639 

land use on edge vegetation are shown in (c) and (f). Land use effects on interior vegetation not 640 

shown due to small sample size.  641 

 642 

  643 
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Tables 644 

Table 1. Estimates of GPP from UrbanVPRM as a function of season, land cover (ISA, Tree, 645 

Grass, Shrub, NPV), land use (irrigated or non-irrigated), and fragmentation (interior or edge). 646 

Vegetated surfaces (Veg) refer to land cover classified as tree, grass, or shrub. Total refers to 647 

spatially and temporally integrated GPP. Mean refers to spatially and temporally averaged GPP 648 

(total GPP divided by area and time). The first and second values in each cell refer to SoCAB and 649 

Urban regions (grey and red regions in Fig 1a, respectively).  650 
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Non-urban: Land Cover

(a) Tree
Grass
Shrub
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Urban: Land Cover

(c)
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Urban: Land Use

(a) Irrigated
Non-Irrigated
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Urban: Fragmentation

(c) Edge
Interior
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Urban: Land Use + Fragmentation

(e) Irrigated Edge
Non-Irrigated Edge
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Area 

(km2) 

Gross Primary Production: SoCAB (Urban) 

Total (Tg C) Mean (µmol m-2 s-1) 

Spring 

(MAM) 

Summer 

(JJA) 

Annual 

Spring 

(MAM) 

Summer 

(JJA) 

Annual 

All 

16165 

(6893) 

2.02 

(0.45) 

2.43 

(0.49) 

6.47 

(1.38) 

1.29 

(0.67) 

1.55 

(0.71) 

0.99 

(0.52) 

Veg 

10694 

(4114) 

1.69 

(0.34) 

2.24 

(0.43) 

5.73 

(1.15) 

1.64 

(0.86) 

2.16 

(1.07) 

1.38 

(0.73) 

Tree 

3378 

(1844) 

0.43 

(0.09) 

0.79 

(0.14) 

1.80 

(0.34) 

1.29 

(0.53) 

2.36 

(0.77) 

1.34 

(0.49) 

Grass 

2142 

(1259) 

0.28 

(0.12) 

0.40 

(0.16) 

1.02 

(0.44) 

1.35 

(0.99) 

1.93 

(1.32) 

1.23 

(0.90) 

Shrub 

5174 

(1011) 

0.98 

(0.13) 

1.05 

(0.13) 

2.93 

(0.37) 

2.00 

(1.29) 

2.14 

(1.32) 

1.48 

(0.96) 

Irrigated (860) (0.11) (0.13) (0.36) (1.35) (1.67) (1.12) 

Non-Irr (3250) (0.27) (0.27) (0.74) (0.89) (0.89) (0.61) 

Interior (165) (0.03) (0.04) (0.10) (2.22) (2.41) (1.65) 

Edge (850) (0.16) (0.18) (0.48) (2.00) (2.22) (1.52) 

Irrigated 

Edge 

(160) (0.04) (0.06) (0.16) (3.00) (3.86) (2.64) 



Non-Irr 

Edge 

(690) (0.11) (0.12) (0.33) (1.79) (1.85) (1.28) 

 






